오라클, "AI가DB 안으로"…AI 데이터베이스 26ai로 차별화 승부

컨버지드 DB, 제로 ETL, DB 레벨 보안까지 하나로…'데이터를 위한 AI' 전략 구체화

컴퓨팅입력 :2025/12/11 21:50

오라클이 데이터를 밖으로 빼내지 않고 데이터베이스에서 바로 인공지능(AI)을 실행하는 방식을 앞세워 AI 데이터플랫폼 기업으로 거듭나겠다고 선언했다.

한국오라클은 11일 서울 강남구 아셈타워에서 미디어 브리핑을 열고 오라클 AI 월드 2025의 주요 발표 내용을 국내 시장 관점에서 재정리했다. 

올해 처음 개최된 오라클 AI 월드는 기존 글로벌 연례 행사였던 '오라클 클라우드월드'의 이름을 바꾼 것으로 클라우드 인프라와 데이터베이스, 애플리케이션 전반을 AI 중심으로 재편하는 전략이 집중적으로 소개된 무대다.

한국오라클 나정훈 부사장(사진=남혁우 기자)

행사에서 나정훈 한국오라클 부사장(클라우드 엔지니어링 총괄)은 AI 전략의 출발점을 'AI를 위한 데이터'가 아니라 '데이터를 위한 AI(AI for Data)'라고 규정했다. 

그는 "AI 도입의 성패는 '데이터 이동'을 얼마나 줄이느냐에 달렸다"며 "오라클은 데이터를 AI 모델로 가져가는 비효율을 없애고, 데이터가 저장된 바로 그곳에 AI를 심는 '데이터 중심' 전략으로 시장 판도를 바꾸겠다"고 강조했다. 

나 부사장은 "오픈AI가 오라클을 선택한 이유도 타사가 수년 걸릴 대규모 클러스터를 1년이 채 안 되는 기간에 구축할 수 있는 인프라 역량 때문"이라며 "AI를 위해 데이터를 밖으로 빼내지 않는다는 원칙 아래, 데이터가 머무는 자리로 AI를 가져오는 것이 오라클 전략의 핵심"이라고 말했다.

차세대 인프라 전략은 장진호 상무가 설명했다. 그는 오라클 클라우드 인프라(OCI)의 기존 '젠2(Gen 2)' 클라우드 아키텍처를 AI 워크로드에 맞게 재설계한 '엑셀러론(Acceleron)' 기반 인프라를 소개했다. 엑셀러론은 GPU 간 연결 구조와 네트워크, 스토리지를 모두 AI 학습·추론에 맞게 최적화한 구조로, 수십만개의 GPU를 하나의 거대한 클러스터로 묶는 것이 특징이다. 

실제로 오라클은 엔비디아 GPU를 최대 80만개까지 단일 클러스터로 연결하는 'OCI 제타스케일10(Zettascale10)' 아키텍처를 공개했으며, 미국 텍사스 애빌린에 오픈AI와 함께 구축 중인 '스타게이트' 슈퍼클러스터의 기반 패브릭으로 적용하고 있다.

한국오라클 장진호 상무(사진=남혁우 기자)

장 상무는 "엑셀러론은 단순히 하드웨어를 늘린 것이 아니라, 네트워크와 스토리지까지 전 계층을 AI 워크로드에 맞춰 다시 설계한 인프라"라며 "이미 13만장 규모 GPU 클러스터를 운영 중이고, 제타스케일10을 통해 80만장 수준까지 확장하는 '물리적 체급'의 차이를 보여줄 것"이라고 말했다.

데이터베이스 측면에서는 '오라클 AI 데이터베이스 26ai'가 프레임 전환의 중심에 섰다. 오라클은 기존 '오라클 데이터베이스 23ai'에서 선보였던 AI 벡터 검색, 셀렉트 AI 기능을 발전시켜 26ai에 통합했다.

조경진 상무는 "벡터 검색은 기계가 사람처럼 문맥과 의미를 이해하게 만드는 핵심 기술"이라며 "오라클은 별도 벡터 데이터베이스를 따로 구축하지 않고도, 기존 데이터베이스 안에서 관계형 데이터와 문서, 이미지 같은 비정형 데이터를 함께 벡터로 다루고 검색할 수 있다"고 설명했다. 

그는 "개발자는 익숙한 SQL과 JSON, 그래프, 공간 데이터 위에 AI 벡터 검색을 얹어, 복잡한 인프라를 다시 짜지 않고도 LLM, RAG 같은 고급 AI 기능을 구현할 수 있다"고 덧붙였다.

실제 시연에서는 자연어로 "이번 달 배송 지연 건수는?"이라고 묻자, 셀렉트 AI가 데이터베이스 스키마 정보를 바탕으로 SQL을 자동 생성해 결과를 반환하는 화면이 소개됐다. 

한국오라클 조경진 상무(사진=남혁우 기자)

오라클 셀렉트 AI는 자연어를 SQL로 변환하고, 필요할 경우 기업 문서와 로그를 벡터로 변환해 함께 조회하는 방식으로 '대화하듯 데이터에 질의'하는 경험을 제공한다.

조 상무는 "결국 중요한 것은 LLM이 아니라 기업 고유 데이터"라며 "데이터베이스 안에 AI를 내장해 개발자와 데이터 분석가가 기존 워크플로를 거의 바꾸지 않고도 AI 기능을 쓰게 하는 것이 목표"라고 말했다.

데이터 플랫폼 전략은 김태완 상무가 맡았다. 그는 파편화된 데이터를 하나로 엮는 '오라클 AI 데이터 플랫폼'과 '오픈 데이터 레이크하우스', '제로 ETL(Zero-ETL)' 전략을 함께 제시했다.

김 상무는 "이제 데이터가 어디에 있든 상관없는 '오픈 데이터' 시대"라며 "오라클의 전략은 데이터를 복제하거나 옮기는 작업을 최소화해, 이동에 드는 시간과 비용을 없애는 '제로 ETL'을 실현하는 것"이라고 강조했다. 

한국오라클 김태완 상무(사진=남혁우 기자)

그는 "AWS, 마이크로소프트 애저, 구글 클라우드 등과의 멀티클라우드 연동을 통해, 여러 클라우드에 흩어진 데이터를 데이터 사일로 없이 하나의 논리적 플랫폼처럼 다루게 하는 것이 목표"라고 설명했다.

보안과 규제 준수 측면에서 오라클은 '프라이빗 AI'를 핵심 차별점으로 내세웠다.

관련기사

나정훈 부사장은 "많은 기업이 비싼 GPU를 도입해 놓고도, 데이터 반출과 규제 이슈 때문에 실제 업무에는 쓰지 못하고 있다"며 "오라클은 'AI를 위해 데이터를 밖으로 빼내지 않는다'는 철학 아래, 데이터가 저장된 데이터베이스와 데이터 레이크, 애플리케이션 주변에 AI를 심는 구조를 택했다"고 말했다. 

그는 "데이터 주권과 규제가 중요한 금융, 공공, 제조 기업이 기존 보안·거버넌스 체계를 그대로 유지한 상태에서 고성능 AI를 쓸 수 있도록 하는 것이 오라클 프라이빗 AI의 지향점"이라고 부연했다.