[신년 인터뷰] 조준희 KOSA 회장 "AI 승부처는 중동·동남아…완제품 풀스택으로 간다"

국산 반도체·모델·서비스 결합한 '풀스택 AI'…AI 기본법·투자 생태계 활성화 최우선 과제

컴퓨팅입력 :2026/02/04 14:43    수정: 2026/02/04 14:56

글로벌 경제 위기 속에서 올해 인공지능(AI) 산업은 다시 한 번 중대한 분기점에 섰다. 생성형 AI의 급격한 확산 후 이어진 성능 경쟁과 투자 열풍은 이제 '얼마나 더 큰 모델을 만들 수 있는가'라는 질문을 넘어 'AI가 실제 무엇을 할 수 있는가'라는 보다 본질적인 문제로 이동하고 있다. 지디넷코리아는 릴레이 인터뷰를 통해 각기 다른 위치에서 AI 산업을 바라보는 리더들의 시선을 종합해 올해 AI 산업이 어디로 향하고 있는지, 무엇을 준비해야 하는지를 짚어본다. 기술 낙관과 과도한 불안 사이에서 AI의 현실적인 진화 경로와 산업적 의미도 살펴본다. [편집자주]

"현실적으로 빅테크와 인공지능(AI) 모델 정면 승부는 어렵습니다. 하지만 우리에겐 세계 최고 수준 제조 데이터가 있습니다. 이를 무기로 중동·동남아 소버린 AI 시장을 공략한다면 충분히 승산이 있습니다."

4일 서울 송파구 한국인공지능,소프트웨어산업협회(KOSA) 사무실에서 만난 조준희 회장은 올해는 AI 풀스택 수출 원년이라며 글로벌 시장 진출 비전을 제시했다. 그는 한국 AI 산업이 나아가야 할 핵심 키워드로 산업 특화 피지컬 AI(Physical AI)와 풀스택 AI를 강조하며 강한 자신감을 내비쳤다.

조준희 한국인공지능,소프트웨어산업협회(KOSA) 회장 (사진=KOSA)

미국도 못 가진 제조 데이터…글로벌 공략 핵심 무기

CES와 다보스포럼, 중동 순방 등 바쁜 글로벌 일정을 소화하고 있는 조 회장은 해외에 나가면 가장 먼저 받는 질문이 '데이터'라고 운을 뗐다.

그는 "외국에 가면 제조 데이터부터 묻는다"라며 "피지컬 AI든 제조 AI든 결국 최고 성능을 내려면 관련 데이터가 필요한데, 반도체,자동차,조선 등 세계 탑티어 수준 제조업 현장에서 축적된 고품질 데이터는 미국조차 가지지 못한 우리의 강력한 무기"라고 강조했다.

두바에서 두코그룹 타릭 베이커 부회장과 만난 조준희 회장 (사진=조준희 회장 페이스북)

조 회장이 말하는 제조 데이터는 단순한 산업 통계나 생산량 정보가 아니다. 공장 설비에서 쌓이는 실시간 센서 데이터, 생산 공정의 품질 데이터, 불량 원인과 조치 기록, 설비 유지보수 이력, 공정 최적화 로그 등 '현장에서만 생성되는 데이터'가 핵심 자산이라는 설명이다.

그는 "AI는 결국 데이터 싸움"이라며 "어떤 데이터를 학습하고, 어떻게 튜닝해 서비스로 녹이느냐에 따라 성능과 신뢰도가 갈린다"고 말했다.

이 제조 데이터가 올해 KOSA가 강조하는 피지컬AI 전략의 핵심 기반이다. 조 회장은 "피지컬 AI는 일반 파운데이션 모델만으로는 안 된다"며 "로봇이 움직이려면 비전 모델과 액션 모델이 필요하다"고 설명했다.  산업 현장에서 비전, 액션 중심 대규모액션모델(LAM) 개발이 빠르게 늘고 있다는 점도 짚었다.

고객이 원하는 건 '부품'이 아닌 '완제품'…풀스택 AI로 차별화

조준희 회장은 한국이 보유한 고급 제조 데이터를 바탕으로 글로벌 시장을 공략할 해법으로 '풀스택(Full-Stack) AI'를 제시했다. 단일 AI 모델이나 소프트웨어만으로는 한계가 있는 만큼, AI 전용 칩(NPU)부터 모델, 에이전트 서비스까지 통합한 '완성형 패키지'로 승부하겠다는 구상이다.

그는 "특히 고객이 원하는 것은 부품이 아닌 바로 쓸 수 있는 완제품"이라며 "추가 작업 없이 즉시 도입해 운영할 수 있는 형태로 제공해야 한다"고 강조했다.

휴머노이드M.AX 얼라이언스 공동관을 방문해 10개 참가사를 둘러보는 조준희 KOSA 회장 (사진=조준희 KOSA 회장 페이스북)

조 회장은 풀스택 AI가 특히 중동, 동남아에서 경쟁력이 있을 것으로 내다봤다. 기술 패권 경쟁이 심화되면서 특정 국가, 서비스에 종속되는 것을 경계하는 흐름이 강해지고 있고 이 과정에서 한국이 신뢰 기반의 대안이 될 수 있다는 판단이다.

더불어 풀스택 AI 차별화 포인트로 데이터 결합을 제시했다. 제조, 공정 데이터 기반 산업 특화 AI를 설계하면 범용 모델보다 현장 적용력과 실효성이 높아진다는 설명이다.

조 회장은 "제조 AI와 피지컬 AI는 데이터와 서비스의 결합이 핵심"이라며 "AI모델과 에이전트 서비스를 최적 조합하는 것이 승부처"라고 말했다.

KOSA는 이 전략을 현실화하기 위해 회원사 기반도 확장하고 있다. 소프트웨어 기업 중심에서 벗어나 리벨리온 등 AI 칩 개발사와 하드웨어 제조사까지 포괄해 인프라,모델,서비스를 함께 제공할 수 있는 풀스택 생태계를 만들겠다는 목표다.

KOSA, AI 스타트업 '자금줄' 확보... "페이팔 마피아 같은 생태계 만든다"

조 회장은 풀스택 AI  등의 전략을 현실화하기 위해 올해 협회 최우선 과제로 '투자 생태계 활성화'와 'AI 기본법 안착'을 꼽았다. 기술 경쟁이 치열해질수록 스타트업의 생존과 스케일업이 중요해지고, 제도 불확실성이 해소돼야 기업 투자가 본격화될 수 있다는 판단이다.

그는 유망한 국내 AI 스타트업이 자금난으로 고사하는 일을 막기 위해 글로벌 네트워크 기반의 투자,협력 생태계를 만들겠다고 밝혔다. 조 회장은 "미국 실리콘밸리의 '페이팔 마피아'처럼 성공한 선배 기업이 후배 기업을 이끌고 자본이 다시 기술로 흘러 들어가는 선순환 구조를 만들겠다"고 강조했다.

피지컬 AI 글로벌 얼라이언스 출범식 (사진=KOSA)

국회 논의가 진행 중인 AI 기본법에 대해서도 조속한 제도 정비가 필요하다고 했다. 그는 "기업이 두려워하는 것은 규제 자체가 아니라 불확실성"이라며 "법적 근거가 마련돼야 기업들이 예측 가능성을 갖고 과감하게 투자할 수 있다"고 말했다. 이어 "골든타임을 놓치지 않으려면 조속한 입법이 필수"라고 덧붙였다.

공공 AI 사업 구조 개선 필요성도 제기했다. 조 회장은 AI 과제에서 인프라 비용 비중이 과도하게 커질 수 있다는 점을 지적하며, 개발자와 기업이 기술 가치를 제대로 인정받는 시장 구조가 필요하다고 강조했다. 최근 정부의 '독자 파운데이션 모델(도파모)' 사업 1차 심사 결과가 나온 가운데 '패자부활전'에 대해서도 신중론을 폈다. 

재심사로 일정이 늘어 산업 실행 속도가 떨어질 수 있는 만큼 패자부활전을 진행할 예산이 있다면 산업용 AI와 피지컬 AI 등 성과가 나는 곳에 투자하는 것이 현실적이라고 제언했다.

관련기사

조 회장은 KOSA의 역할도 재정의했다. 단순한 협,단체를 넘어 기업의 성장과 수출을 돕는 실질적 비즈니스 파트너가 되겠다는 것이다. 

그는 "이제 KOSA는 회원사 친목을 넘어, 우리 기업들이 만든 기술을 세계 시장에 내다 파는 '영업사원'이 되겠다"며 "대한민국 AI가 제조 데이터와 풀스택이라는 경쟁력을 바탕으로 세계 시장에서 성과를 내도록 발로 뛰겠다"고 말했다.