[현장] AI G3 향한 대전환 '시동'…산·학계, 피지컬 AI·독자 모델 투트랙 비전 제시

제조·반도체·로봇·학계 총집결…인증체계·NPU·데이터 인프라 등 산업 AX 해법 모색

컴퓨팅입력 :2025/11/26 10:56    수정: 2025/11/26 11:22

우리나라의 인공지능 3대 강국(AI G3) 도약을 위한 핵심 전략으로 '피지컬 AI'와 '독자 AI 파운데이션 모델' 개발이 부상하고 있다. 로봇·AI 반도체·대규모언어모델(LLM)·제조업 현장이 한데 맞물린 산업 AI 대전환(AX) 방향성을 논의하기 위해 정부·국회·산업·학계가 머리를 맞댔다.

더불어민주당 정동영 의원과 국민의힘 최형두 의원은 26일 국회 의원회관에서 'AI G3 강국 신기술 전략 조찬 포럼'을 공동 개최했다.

이날 포럼에는 김윤·정진욱·유용원·민형배·이성윤·강경숙·이주희 의원 등 여야 상임위 국회의원들을 비롯해 과학기술정보통신부 김경만 인공지능정책실장과 정보통신산업진흥원(NIPA) 김득중 부원장이 참석했다. 또 네이버·SK하이닉스·LG·한화에어로스페이스 등 주요 ICT 기업과 서울대·카이스트·성균관대 등 학계 관계자들이 함께했다.

AI G3 강국 신기술 전략 조찬 포럼 현장 (사진=한정호 기자)

첫 발제를 맡은 김민표 두산로보틱스 대표는 글로벌 제조업 인력난, 저출생·고령화로 인한 생산가능인구 급감 등을 근거로 피지컬 AI가 인류 산업구조의 필연적 대전환임을 강조했다. 그는 "챗GPT 등장 이후 지능형 모델이 폭발적으로 발전했고 추론 비용이 급감했다"며 "이제는 AI가 실제 기계·로봇에 접목되는 시대가 시작됐다"고 말했다.

그러면서 "피지컬 AI는 기존 생성형 AI가 학습하는 인터넷 데이터로는 학습이 불가능하다"며 "힘·압력·접촉·관절 정보 등 센서 기반 비정형 데이터를 대량 수집해야 한다"고 강조했다.

이는 숙련공의 장기 노동 경험에서만 얻어지는 고난도 데이터다. 엔비디아를 비롯한 빅테크 기업에서 이를 시뮬레이션으로 대체하려는 시도도 있으나, 실제 적용 단계에서 발생하는 현실과 시뮬레이션의 격차 때문에 완전한 대체는 불가능하다는 설명이다.

이에 대해 김 대표는 "숙련 기술을 대신할 수 있는 AI 로봇을 만들려면 지금의 자율주행 산업보다 훨씬 큰 장기 투자가 필요하다"며 "용접·샌딩·고하중 반송 등 제조 현장 핵심 직무를 중심으로 피지컬 AI의 로드맵을 설계해야 한다"고 제안했다.

이어 그는 피지컬 AI 활성화를 위한 정책을 제언했다. 먼저 지능형 로봇 안전 인증제도 개편이다. 현재는 철창 안에서 반복동작만 수행하는 산업용 로봇을 기준으로 한 안전규격만 존재해 AI 기반 로봇의 능동적 판단을 전혀 반영하지 못한다는 지적이다.

또 국내 기업 중심의 로봇 보조금 제도 설계도 제시했다. 과거 보조금이 오히려 중국산 서빙 로봇만 확산시킨 사례를 언급하며 "국산 플레이어에 혜택이 돌아가는 구조를 만들어야 산업이 성장한다"고 설명했다.

김민표 두산로보틱스 대표와 SKT 이영탁 부사장이 기조 발제를 진행했다. (사진=한정호 기자)

다음으로 SKT 이영탁 부사장은 현재 참여 중인 정부 주도 독자 AI 파운데이션 모델 프로젝트 전략을 소개했다. SKT는 2018년부터 자체 LLM을 개발한 경험과 대규모 AI 데이터센터 운영 역량을 기반으로 5천억 파라미터 규모의 초거대 모델을 구축한다는 목표다.

SKT 컨소시엄에는 크래프톤·포티투닷·리벨리온·셀렉트스타·서울대·카이스트 등이 참여해 AI 서비스·모델·데이터·인프라 전 과정을 아우르는 풀스택 개발을 진행 중이다.

이 부사장은 "5천억 파라미터 모델은 고급 추론·전문 도메인 이해·복잡한 사고 능력을 갖춰 글로벌 모델과 경쟁할 수 있다"며 "'전문가 혼합(MoE)' 구조로 비용 효율을 극대화하겠다"고 설명했다.

특히 AI 접근성을 전화·문자 등 기본 통신서비스로 확장해 '모든 국민의 AI, 모든 국민의 에이닷'이라는 슬로건을 제시했다. 아울러 국내 제조업 전반의 AX도 주도하겠다는 비전을 밝혔다.

이날 포럼에서는 피지컬 AI와 독자 AI 파운데이션 모델 프로젝트의 병렬 추진 필요성이 제기됐다. 학계에서는 불확실성·센서 한계·반복정확도 확보 없이는 피지컬 AI가 실제 산업에 들어갈 수 없다고 지적하며 데이터·물리기반(PBF) 모델링, 전문인재 양성의 시급성을 강조했다.

성균관대 김광수 AI융합원장은 "AI 기술만 발전해선 안 되고 위험 작업을 맡길 수 있는 새로운 인증제도와 법·제도 기반이 동시 구축돼야 한다"고 짚었다.

여야 상임위 의원들이 산업계의 정책 제언에 대해 의견을 공유했다. (사진=남혁우 기자)

산업계는 국산 AI 반도체인 신경망처리장치(NPU) 생태계 강화가 AI G3 도약의 핵심이라고 목소리를 냈다. 리벨리온·딥엑스·모빌린트·퓨리오사AI 등은 GPU 의존 구조를 벗어나려면 국가 차원의 학습용·온디바이스용 NPU 투자가 병행돼야 한다는 점을 지적했다. 또 NPU 상용화를 통해 비용효율성이 높아지면 피지컬 AI와 실제 산업 현장 적용이 확대될 것으로 전망했다.

이에 대해 정진욱 의원은 "피지컬 AI 산업에 적용될 움직이는 로봇을 전제로 한 완전히 새로운 인증 제도마련이 시급하다"며 "광주에서 추진하는 NPU 특화 데이터센터 등 국산 생태계 중심의 인프라 투자를 국회가 적극 뒷받침하겠다"고 밝혔다.

관련기사

과기정통부 김경만 실장은 "독자 AI 파운데이션 모델 프로젝트는 2027년까지 LLM 모델부터 거대행동모델(LAM)과 피지컬 AI 접목까지 단계적으로 확대할 것"이라며 "피지컬 AI 투자를 위한 예타는 물론 국산 AI 반도체 밸류체인 강화, 공공 데이터 생태계도 준비하겠다"고 설명했다.

최형두 의원은 "NPU를 활용하는 것이 '진짜 AI'라는 데 동의하며 피지컬 AI 예산 확보에 총력을 다하는 중"이라며 "국회가 산업·연구·스타트업이 함께 뛰는 AI 생태계를 만들기 위해 적극 지원하겠다"고 강조했다.