새로운 신약을 생성형 AI로 개발하는 시대에 본격 진입했다.
KAIST(총장 이광형)는 김재철AI대학원 예종철 교수 연구팀이 분자 데이터의 분자 구조와 생화학적 특성을 동시에 탐색하고 예측할 수 있는 생성형 AI 기술을 개발했다고 25일 밝혔다.
연구팀은 이 기술에 다중 모달리티 학습(multi-modal learning) 기술을 적용했다.
연구팀은 "화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존 AI 기술을 뛰어넘는 성능을 나타냈다"고 말했다.
심층 신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구가 제시되기도 했다.
그러나 새로운 화합물의 생성하면서도 기존 화합물의 특성 예측이 동시에 가능한 기술은 개발 문턱을 넘지 못했다.
연구팀은 화학 특성값의 집합 자체를, 분자를 표현하는 데이터 형식으로 간주해 분자 구조의 표현식과 함께 둘 사이의 상관관계를 아울러 학습하는 AI학습 모델을 제안했다.
유용한 분자 표현식 학습을 위해 컴퓨터 비전 분야에서 주로 연구된 다중 모달리티 학습 기법을 도입했다. 이를 기반으로 두 다른 형식의 데이터를 통합하는 방식으로, 바라는 화합물의 성질을 만족하는 새로운 화합물의 구조를 생성하거나 주어진 화합물의 성질을 예측하는 생성 및 성질 특성이 동시에 가능한 모델을 개발했다.
연구팀이 제안한 모델은 50가지 이상의 동시에 주어지는 특성값 입력을 따르는 분자 구조를 예측하는 등 분자의 구조와 특성울 동시에 이해해야 풀수 있는 과제를 해결했다.
연구팀은 "이러한 두 데이터 정보 공유를 통해 화학반응 예측 및 독성 예측과 같은 다양한 문제에도 기존 인공지능 기술을 뛰어넘는 성능을 보이는 것으로 확인됐다"고 덧붙였다.
KAIST 예종철 교수는 "이 연구는 독성 예측, 후보물질 탐색과 같은 산업계에서 중요하게 다뤄지는 과제를 포함해, 더 광범위하고 풍부한 분자 양식과 고분자, 단백질과 같은 다양한 생화학적 영역에 적용될 수 있을 것"으로 기대했다.
예 교수는 또 “새로운 화합물의 생성과 화합물의 특성 예측 기술을 통합하는 화학분야의 새로운 생성 AI기술의 개척을 통해 생성 AI 기술의 저변을 넓힌 것에 자부심을 갖는다”고 말햇다.
관련기사
- "생성 AI 투자, 비즈니스 핵심을 찾아 집중하라"2023.10.13
- 가트너 ”생성형 AI 기대감 최고조”2023.08.17
- "AI로 신약 개발 성공률·속도 높여…제약바이오 디지털 전환 이룰 것"2023.07.28
- KAIST, 인공지능반도체 대학원 설립2023.06.02
예종철 교수 연구팀의 장진호 석박통합과정이 제1 저자로 참여한 이 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’(3월 14일 자) 온라인판에 게재됐다.
한편 이번 연구는 한국연구재단의 AI데이터바이오선도기술개발사업으로 지원됐다.