줄넘기를 처음 배운 아이가 있다고 해 보자. 이 아이는 곧 '줄을 두번 넘으라'거나 '앞으로 가며 줄넘기를 하라' 등의 개념도 이해할 수 있게 된다.
사람은 이처럼 새로 배운 개념을 이미 아는 다른 지식과 결합해 새로운 아이디어를 내거나 행동을 할 수 있다. 이를 '구성적 일반화(compositional generalization)' 또는 '체계적 일반화(systematic generalization)'라고 한다.
반면 인공지능(AI)은 이러한 능력이 없기 때문에 인간의 의식을 제대로 구현할 수 없다는 주장이 힘을 얻었다. AI의 이런 한계를 극복하기 위해 많은 연구가 이뤄졌지만 성과는 제한적이었다. GPT-4와 같은 첨단 대규모 언어 모델에서 여러 예상하지 못했던 능력의 창발이 나타났지만, 사람과 같은 일반화에는 어려움을 겪고 있다.
이런 가운데, 미국과 스페인 연구진이 AI 언어 모델에 구성적 일반화를 학습시킬 수 있는 방법을 찾아 주목된다. 이 연구는 학술지 '네이처'에 25일(현지시간) 실렸다.
미국 뉴욕대와 스페인 폼페우파브라대학 연구진은 챗GPT 같은 AI 언어모델에 적용할 수 있는 '조합성을 위한 메타 학습(MLC, Meta-learning for Compositionality)'이라는 기법을 개발했다. 구성적 일반화가 가능한 새로운 AI 모델을 만들지 않고도, 기존 AI 모델에 적용할 수 있다.
MLC는 분리된 개념을 조합해 새로운 것을 학습하기 위한 기법이다. 고정된 데이터셋이 아니라 계속해서 변하는 과제들을 통해 구성적 일반화를 학습한다. AI 모델은 '줄넘기하다(skip)'라는 단어를 새로 배운 후 '뛰다(jump)'나 '두번 뛰다(jump twice)' 처럼 그 동안 알고 있던 개념과 결합해 '두번 줄넘기하라(skip twice)'는 지시를 받는다. 이후 신경망을 거쳐 나온 결과를 처음 출제자가 의도한 결과와 비교한다.
이 학습 '에피소드'가 끝난 후, 이어서 '발끝으로 걷다(tiptoe)'라는 단어를 새로 배운 후 '발끝으로 뒷걸음쳐 교통 콘 주변을 돈다(tiptoe backward around a cone)'이라는 행동을 배우는 새로운 에피소드를 시작한다.
브렌든 레이크 뉴욕대 교수는 "지난 35년 간 인지과학과 인공지능, 언어학, 철학 분야 연구자들은 인공신경망이 사람과 같은 체계적 일반화를 할 수 있는지 논쟁해 왔다"라며 "이번 연구는 일반적인 신경망이 사람의 체계적 일반화 능력을 모방할 수 있음을 보인 첫 사례"라고 말했다.
연구진은 이런 방식의 MLC를 반복한 후 AI 모델의 구성적 일반화 능력을 테스트했다. 일반적 단어 외에도, 'zup'이나 'dax' 등 인위적으로 만든 무의미한 단어에 임의의 뜻을 부여한 후 AI가 이를 여러 방식으로 적용해 보게끔 했다.
MLC 학습을 한 AI는 실험에 참여한 인간과 비슷하거나 더 나은 결과를 보였다. 또 실험에 참가한 사람과 MLC 학습 AI 모두 챗GPT나 GPT-4보다는 나은 결과를 보였다.
다만 이 방식은 AI가 학습한 데이터의 범위를 넘어서는 과제를 수행할 수 있게 해 주는 것은 아니라고 연구진은 밝혔다.
관련기사
- 챗GPT, BBC 콘텐츠로 데이터 학습 못 한다2023.10.08
- 생성AI의 저작권 침해, 어디까지 허용해야 할까2023.09.01
- "생성 AI가 암 연구에 획기적 발전 일으킨다"2023.10.26
- SK하이닉스 "16단 HBM3E, 검증 단계서 12단과 '동등 수율' 확보"2024.11.05
마르코 바로니 폼페우파브라대학 교수는 "챗GPT 같은 초거대 언어모델은, 최근 많이 개선되긴 했지만, 여전히 구성적 일반화에 어려움을 겪고 있다"라며 "MLC가 초거대 언어모델의 관련 능력을 향상시킬 수 있을 것"이라고 말했다.
논문 제목은 Human-like systematic generalization through a meta-learning neural network 이다.