KAIST와 IBM이 인간의 뇌가 생각하고 감정이나 행동을 조절하는 정보처리 방식을 처음 확인하고, 새로운 AI(인공지능) 강화학습 방향을 제시했다.
KAIST는 뇌인지과학과 이상완 교수 연구팀이 IBM AI 연구소와 인간의 뇌가 목표 변화와 불확실한 상황을 처리하는 방식을 규명하고, 차세대 AI 강화학습이 나아가야 할 방향을 제시했다고 14일 밝혔다.
이상완 교수는 국내에서는 유일하게 인간의 지능을 AI의 틀 안에서 해석하는 새로운 패러다임의 연구를 진행 중이다. 최근 5년 간 이 분야에서 국내 및 해외 관련 특허를 50여 건 출원했다.
이 교수는 "사람은 갑작스러운 변화가 닥쳐도 금세 계획을 새로 세우고 목표를 조정하는 안정성과 유연성을 동시에 갖추고 있다. 그러나 이세돌 기사와 대국을 펼친 알파고를 비롯해 로봇 분야에 널리 사용되는 모델 프리 AI는 이러한 두 능력을 함께 구현하지 못한다"고 설명했다.
이 교수는 "그 이유가 전두엽의 독특한 정보 처리 방식에 있으며, 이 원리가 ‘뇌처럼 유연하고 안정적인 AI’를 만들 핵심 열쇠가 될 수 있음을 규명한 것"이라고 부연 설명했다.
연구팀은 기존 강화학습 모델들이 목표가 바뀌는 상황에서는 안정성이 떨어지고, 환경이 불확실하면 유연성이 부족해지는 한계가 있지만 인간은 두 요소를 동시에 달성한다는 점에 집중했다. 인간과 AI 차이가 전두엽이 정보를 표현하는 방식 자체에서 비롯된다고 본 것.
연구팀이 뇌 기능 MRI(fMRI) 실험, 강화학습 모델, AI 분석 기법을 활용한 결과, 인간 전두엽은 ‘목표 정보’와 ‘불확실성 정보’를 서로 간섭하지 않도록 분리해 저장하는 특별한 구조를 가지고 있음이 처음 밝혀졌다. 이런 구조가 뚜렷할수록 사람은 목표가 바뀌면 빠르게 전략을 바꾸고, 환경이 불확실해도 안정적인 판단을 유지했다.
연구팀은 이를 통신 기술의 멀티플렉싱(multiplexing)처럼 서로 다른 정보를 한 번에 처리하는 특징을 갖는다는 점도 확인했다.
이상완 교수는 "이렇게 인간의 전두엽은 목표가 바뀔 때마다 그 변화를 민감하게 추적해 의사결정의 유동성을 확보하는 ‘채널’이 있고, 동시에 또 다른 채널을 통해 환경의 불확실성을 분리해 안정적인 판단을 유지했다"고 말했다.
흥미로운 점은 전두엽이 첫 번째 채널을 통해 단순히 학습을 실행하는 수준을 넘어서, 두 번째 채널을 활용해 상황에 따라 어떤 학습 전략을 쓸지 스스로 고르는 역할까지 한다는 것이다.
연구팀은 전두엽이 단순히 학습을 실행하는 수준을 넘어, 상황에 따라 어떤 학습 전략을 사용할지 스스로 선택하는 ‘메타학습 능력’을 갖고 있다는 점을 보여줬다. 즉, 전두엽은 무엇을 배울지뿐 아니라 어떻게 배울지도 학습하는 구조를 가지고 있으며, 이것이 인간이 끊임없이 바뀌는 상황에서도 흔들리지 않는 이유다.
이 연구는 개인의 강화학습·메타학습 능력 분석, 맞춤형 교육 설계, 인지 능력 진단, 인간-컴퓨터 상호작용 등 다양한 분야에 활용될 수 있으며, 뇌 기반 표현 구조를 활용하면 ‘뇌처럼 생각하는 AI’기술로서 AI가 인간의 의도와 가치를 더 잘 이해해 위험한 판단을 줄이고 사람과 더 안전하게 협력하는 기술로 이어질 수 있다.
이상완 교수는 “이번 연구는 변화하는 목표를 유연하게 따라가면서도 안정적으로 계획을 세우는 뇌의 작동 원리를 AI 관점에서 규명한 성과이며, 이러한 원리가 앞으로 AI가 사람처럼 변화에 적응하고 더 안전하고 똑똑하게 학습하는 차세대 AI의 핵심 기반이 될 것”이라고 말했다.
관련기사
- 양자컴퓨팅, 황금일터로 뜬다…4년 새 채용 450% 폭증2025.08.11
- IBM "AI 중심 보안 모델, 3년 내 자리 잡아"2025.07.01
- IBM, AI로 로레알 화장품 개발 지원…"지속가능 뷰티 혁신"2025.01.17
- "AI 발전, 인간의 유전자까지 바꿀수도"2025.01.05
연구는 성윤도 박사과정 학생이 1 저자, IBM AI 연구소 마티아 리고티(Mattia Rigotti) 박사가 2저자로 참여했다. 이상완 교수는 교신저자를 맡았다. 연구 결과는 국제 학술지 `네이처 커뮤니케이션스 (Nature Communications)‘(11월 26일 자)에 게재됐다.
과학기술정보통신부 한계도전 R&D 프로젝트 사업 지원을 받아 수행됐다.











