최첨단 인공지능(AI) '엣지 AI'가 국방에도 필수적이라는 주장이 제기 됐다. 온디바이스·거대언어모델(LLM)은 사회에서만큼이나 군사 분야에도 유용하기 때문이다.
한국국방연구원(KIDA)과 과실연 인공지능(AI) 미래포럼은 22일 모두의연구소 강남캠퍼스에서 '제 7차 국방데이터 혁신 네트워크-토크'를 진행했다. 행사는 한국IT서비스학회, 모두의연구소, 지디넷코리아, 한국경제가 후원했다.
이 날 발제는 최첨단 AI를 칭하는 엣지 AI 주제로 진행됐다. 먼저 김홍석 리벨리온 소프트웨어 아키텍트 총괄이 '온디바이스: 꼭 가야할, 하지만 만만치 않은 여정'을 주제로 발제를 진행했다.
김 총괄은 국방 분야에서의 온디바이스 AI에 대해 강조했다. 온디바이스 AI는 전투상황에서 군인이 상황을 파악하고 대응하는데 있어 중요하다. 클라우드나 서버에 데이터를 보내서 분석할 시간이 없기 때문이다.
이에 김 총괄은 "온디바이스는 센서나 AI를 기기에 결합해 데이터를 바로 처리한다"며 "작전 성공 가능성을 높이고 군인들의 안전을 지킬 수 있는 중요한 수단"이라고 강조했다.
동시에 그는 온디바이스 기술 실현의 어려움에 대해 강조했다. 데이터센터에서 병렬컴퓨팅이 이뤄지는 클라우드 기반 AI와 달리 컴퓨터 하나를 통해 데이터를 처리하기 때문이다.
김 총괄은 "기기에 들어가는 칩이나 소프트웨어를 정밀하게 설계하고 센서를 잘 사용해야 한다"며 "전장 환경과 유사한 데이터셋을 구하기 어려운 점도 꼭 해결돼야 할 과제"라고 밝혔다.
이어 김주영 하이퍼엑셀 대표가 '국방 AI를 위한 LLM 특화 반도체 개발'을 주제로 발제했다. 그는 LLM이 국방 분야에 어떻게 접목될 수 있을지에 대한 조사 결과를 공유했다. 현재 미국 국방부는 생성형 AI 모델을 국방에 도입해 정보 수집, 전략 분석, 통신 보안에 활용하고 있다.
김 대표는 "국군도 LLM을 활용한 특화모델을 개발하고 있다"며 "공군과 육군이 특히 이러한 기술을 도입하기 위해 노력하고 있다"고 지적했다.
또 김 대표는 국방 LLM을 도입하기 위해 맞춤형 반도체가 필요하다고 설명했다. 그 이유는 LLM이 기존 딥러닝 모델에 비해 약 1천배에서 1만배 크기 때문이다.
이에 하이퍼엑셀이 현재 개발하는 언어처리장치(LPU) 칩이 기존 그래픽 인터페이스 장치(GPU)보다 효율적으로 기능할 수 있다고 소개했다. LPU는 GPU보다 90% 더 높은 메모리 대역폭을 활용할 수 있다.
관련기사
- KAIST, 미국 국방부가 주목한 'C-러스트' 기술 선도2024.08.13
- 틸론 "국방 혁신 기여"···제8회 국방과학기술 대제전 참가2024.07.30
- '6차 국방데이터 혁신 네트워크' 행사 18일 열려2024.07.20
- "합성데이터, 국방에 꼭 필요"···'국방데이터 네트워크' 5차 행사 열려2024.06.21
김 대표는 "국방용 AI 반도체 시장이 급성장할 것"이라며 "LLM 추론에 최적화된 반도체 개발에 성공해 이 분야의 혁신을 지원하겠다"고 강조했다.
발제에 이어 '국방분야 AI 반도체, 온디바이스 AI 발전방안'을 주제로 산학연군 패널토의도 열렸다. 패널토의에는 조준현 방위사업청 전략기획담당관, 심병섭 한국항공우주산업 미래SW기술팀장, 박원근 네이버클라우드 이사, 최민석 한국전자통신연구원 박사, 김상희 국방과학연구소 박사가 참석했다.