2025년 한국 ICT 산업에 '성장 둔화'와 '기술 대격변'이 공존한 해였다. 시장 침체 속에서도 AI·에너지·로봇·반도체 등 미래 산업은 위기 속 새 기회를 만들었고, 플랫폼·소프트웨어·모빌리티·유통·금융 등은 비즈니스 모델의 전환을 꾀했다. 16개 분야별 올해 성과와 과제를 정리하고, AI 대전환으로 병오년((丙午年) 더 힘차게 도약할 우리 ICT 산업의 미래를 전망한다. [편집자주]
올해 국내 로봇 산업의 최대 화두는 '피지컬 AI'였다. 로봇이 단순 자동화 장비를 넘어 현장에서 데이터를 축적하며 스스로 숙련도를 높이는 '몸을 가진 AI'로 진화하는 흐름이 뚜렷해졌다. 특히 휴머노이드는 기술 경쟁을 넘어 '어디서 어떤 일을 할 수 있나'를 검증하는 단계로 진입했다.
산업통상부 '휴머노이드 M.AX 얼라이언스'가 이 변화의 구심점으로 떠올랐다. 지난 4월 'K-휴머노이드 연합'으로 출범해 수개월 만에 참여 기관이 대폭 늘어나며 규모를 키웠고, 최근엔 산업 현장과 연구 현장에 동시에 '실증 파이프라인'을 열어 젖히며 본격적인 실험이 시작되는 분위기다.
제조 현장으로 녹아드는 휴머노이드
가장 상징적인 변화는 휴머노이드가 실제 공장 라인에 투입돼 업무 단위로 검증을 시작했다는 점이다.
자동차 부품 기업 HL만도 원주공장에는 에이로봇의 바퀴형 세미 휴머노이드 '앨리스 M1'이 투입됐다. 이 로봇은 작업자 기피도와 피로도가 높은 단순·반복 공정을 우선 대상으로 배치될 전망이다.
아모레퍼시픽도 최근 화장품 공장에 에이로봇 휴머노이드를 도입했다. 한양대학교와 협업해 자동화 공정에 '앨리스 M1'을 투입하는 방안을 추진 중이다.
현장 실증이 확대되면서 공정 노하우와 작업 패턴, 품질 관리 방식 등 제조 현장에서 생성되는 데이터가 휴머노이드 학습의 핵심 자산으로 축적될 것으로 보인다. 업계에서는 피지컬 AI 경쟁의 승부처가 데이터의 양과 질, 현장에 얼마나 빠르게 적응하느냐에 달려 있다는 분석이 나온다.
가장 어렵지만 휴머노이드 절실한 조선소에 도전
조선업은 휴머노이드가 도전하는 현장 중에서도 난도가 가장 높다. 고열·스패터·협소 공간·비정형 작업 등 변수가 많아, 단기간에 고난도 공정을 대체하기 어렵다. 그럼에도 조선소는 인력난이 구조화된 영역이라 자동화 수요가 강하게 분출하는 곳이다.
HD현대중공업이 조선소 자동화의 다음 단계로 휴머노이드를 검토하며 실증 논의에 들어간 점이 주목된다. 에이로봇은 울산 현장을 찾아 휴머노이드 기능을 시연하며, 제조업 인공지능 전환 프로그램(M.AX) 흐름 속에서 실증이 가시화되는 모양새다.
접근 방식은 '한 번에 용접'이 아니라 현장 수용성과 안전성을 우선하는 단계적 도입이다. 화재감시 같은 안전 기반 업무부터 시작해 난이도를 점차 높이는 로드맵이 제시되며, 조선소 특화 기능 개발도 병행될 전망이다.
조선소는 이미 협동로봇을 대규모로 운영하며 자동화 기반을 넓히고 있다. 단기적으로 협동로봇이 생산성 유지 수단이라면, 휴머노이드는 장기적으로 고난이도·고위험 공정의 '자율형 인력' 가능성을 시험하는 단계로 읽힌다.
가장 빠른 검증 무대 '물류'
휴머노이드가 가장 빠르게 성과를 낼 영역으로는 유통·물류 분야가 자주 거론된다. 이미 자동화 수준이 높은 창고 환경에서, 인간이 맡아온 수작업 공정(피킹·이송·상하차 보조 등)을 얼마나 효율적으로 대체·보완할 수 있는지가 핵심이다.
로보티즈는 CJ대한통운과 협력해 물류센터 수작업 공정 자동화를 추진하고, 현장 데이터 기반으로 기능을 고도화하는 실증을 진행 중이다.
단기적으로는 양팔형 휴머노이드 및 로봇 핸드 기술을 활용해 작업 부담을 줄이고, 중장기적으로는 물류 환경에 최적화된 '피지컬 AI 기반 작업형 휴머노이드 플랫폼' 공동 개발을 목표로 내걸었다.
물류는 공정이 비교적 표준화돼 있고 반복성이 높다. 피지컬 AI 효율성(작업 속도·오류율·안전·가동률)을 수치로 증명하기 유리하다는 점에서 새해에도 실증이 가장 활발한 전장이 될 가능성이 크다.
대학 연구실로 들어간 '국산 휴머노이드'
산업 현장뿐 아니라 대학 연구실로 국산 휴머노이드 플랫폼이 들어가기 시작했다.
로브로스 휴머노이드 '이그리스-C'는 서강대·광운대·경희대 등 주요 대학 연구실에 순차 인도되며, 물류·조선 등 산업 적용 가능성을 중심으로 성능 평가와 실증 연구가 진행될 예정이다.
대학 도입의 의미는 단순 장비 지원을 넘어, 휴머노이드 연구의 핵심 자산인 '실환경 데이터'를 다양한 조건에서 축적할 수 있다는 데 있다. 서로 다른 연구실과 과제를 통해 쌓이는 데이터는 플랫폼 고도화에 기여할 수 있고, 동시에 학생·연구자가 실제 로봇을 만지며 실험할 수 있어 인재 양성과 연구 확산 효과도 기대된다.
새해는 '검증의 해'…표준화·안전·양산이 성패
올해가 피지컬 AI 준비 작업과 실증 라인 구축에 방점이 찍힌 해였다면, 2026년 새해는 휴머노이드가 현장에서 효율성을 입증하는 '검증의 해'가 될 가능성이 크다. 관전 포인트는 크게 네 가지다.
첫째, 데이터 축적의 속도와 품질이다. 기업·현장별로 수집 방식이 제각각이면 데이터 공유·재사용이 어렵고, 고도화가 느려진다. 내년에는 '어떤 방식으로 데이터를 모으고, 어떤 포맷으로 표준화해 학습에 쓰는가'가 본격적인 경쟁 영역이 될 전망이다.
둘째, 안전 기준과 평가 체계다. 휴머노이드는 이동과 작업이 결합돼 작업 반경이 넓어지고, 사람과의 상호작용도 늘어난다. 산업 현장 확산을 위해서는 기술뿐 아니라 안전·보안·신뢰를 담보하는 기준이 선행돼야 한다는 목소리가 커지고 있다.
셋째, 양산 가능한 하드웨어다. 현장 투입이 늘수록 '몇 대를 만들 수 있느냐'가 현실의 문제로 부상한다. 연구·시연 단계에서 한 발 더 나아가, 내구성·품질·정비성을 갖춘 양산형 모델 경쟁이 본격화될 수 있다.
넷째, 수요 기업이 요구하는 고중량 작업 등 '현장 니즈'의 구체화다. 지금은 단순·반복 공정부터 시작하는 흐름이 강하지만, 실증이 누적될수록 로봇이 맡아야 할 역할은 더 뚜렷해질 것이다.
"AI·실증·수요연계가 핵심…새해엔 효율 보여줘야"
휴머노이드 M.AX 얼라이언스를 총괄하는 박일우 한국산업기술기획평가원(KEIT) 로봇PD는 연합 확대 배경에 대해 "로봇 기업들은 하드웨어 역량을 쌓아왔지만, 휴머노이드가 활성화되려면 로봇 AI와 실증·수요 연계가 필요하다는 의견이 있었다"고 설명했다.
그는 "생태계 조성의 계기가 있어야 기업들의 관심과 호응을 모을 수 있다. "휴머노이드는 현장에서 검증돼야 하는 기술"이라며, 단순 성능 경쟁이 아니라 양산형 모델과 안전, 데이터가 함께 맞물려야 산업 현장에 안착할 수 있다고 강조했다.
박 PD는 내년 과제로 데이터의 표준화·공유 가능성과 부품 내재화, 안전 기술 등을 꼽았다. 그는 "안전 기준이 아직 미비한 만큼 이를 담보할 수 있는 표준과 평가 방법이 필요하다"며 "고중량 작업이 가능한 휴머노이드에 대한 요구도 있다"고 말했다.
관련기사
- "휴머노이드 하체 새 기준"…국민대 연구진이 찾은 해법은2025.12.11
- "로봇 개념 바뀐다…데이터는 금 같아"2025.12.05
- 10조원+α M.AX얼라이언스 투자계획, 국민성장펀드와 연계2025.12.04
- HD현대중공업, 조선소 휴머노이드 도입 추진2025.12.04
결국 휴머노이드 M.AX 얼라이언스의 의미는 기술 구호가 아니라, 실증의 장을 열어 '답을 현장에서 찾는 구조'를 만들고 있다는 데 있다.
공장과 물류센터, 조선소와 대학 연구실까지 실증 무대가 넓어지면서 새해에는 로봇이 '가능성'을 넘어 '성과'로 평가받는 장면이 더 자주 등장할 전망이다. 피지컬 AI의 진가를 가르는 무대는 이제 연구실이 아니라 사람이 일하는 현장이 되어야 한다.











