AX 전문기업 인텔리시스(대표 박은영, 이상구)는 거대언어모델(Large Language Model, LLM)을 활용한 서비스 개발에 필수적인 검생증강생성(Retrieval Augmented Generation, RAG)을 노코드 기반으로 자동 구축할 수 있는 솔루션 ‘레그빌더(Rag Builder)’를 출시했다고 23일 밝혔다.
RAG는 거대언어모델이 답변을 생성하기 전에 사전 학습한 데이터 뿐 아니라, 기업 내의 신뢰할 수 있는 주요 정보를 참조하도록 하는 기술이다. 막대한 리소스를 소요하는 학습 과정을 거치지 않고도 LLM 서비스에 있어서 치명적인 할루시네이션(환각)을 완화시키고, 정확한 지식 활용으로 답변 투명성을 제공, 최근 생성형 AI 분야에서 주목받는 기술이다.
인텔리시스의 이상구 대표(서울대 컴퓨터공학부 교수)는 "RAG는 정보자원을 지식 단위로 분할하는 청킹부터, 각 청크(지식 단위)를 벡터화 하는 임베딩, 사용자 질문에 근거가 되는 청크를 찾아내는 의미검색, 이를 이용해 정확한 답변을 생성하게 하는 증강 생성에 이르는 여러 단계의 파이프라인을 거치는데, 각각의 단계에서 어떤 기술적 전략을 선택하는지에 따라 답변의 정확도가 크게 차이가 난다”고 설명했다. 이어 “현재는 RAG 파이프라인 각 단계에서 사람이 직접 전략을 설정하고 시행착오 과정을 거쳐 최적화 기술 전략을 찾아내는데 수개월이 소요된다. RAG 구축이 LLM 서비스 개발에 병목이 되고 있다. 인텔리시스는 RAG 파이프라인 전체의 최적화 과정을 AI로 자동화함으로써 사람 개입 없이 RAG를 구축할 수 있다”고 밝혔다.
관련기사
- 인텔리시스, 이미지로 패션 상품 소개글 생성 AI ‘루킷’ 출시2023.07.11
- 반도체법도 '비상계엄 직격탄'…연내 입법 불투명2024.12.05
- AWS "한국 AI 모델, 아마존베드락 마켓서 사용 가능"2024.12.05
- 韓 반도체 장비업계, 대중국 수출 규제에도 "기회 요소 충분"2024.12.04
인텔리시스의 '레그빌더(Rag Builder)'는 AI가 기업의 지식 자원을 분석해 사용자의 예상 질문을 도출해내고, 예상 질문에 가장 최적인 RAG 파이프라인을 정의하고 실행, 기존 방식 대비 구축 시간을 300분의 1로 줄여주고 성능은 2.2배 높이는 결과를 보였다고 인텔리시스는 밝혔다.
이 대표는 "생성형 AI 시장 패러다임이 파운데이션 모델 중심에서 혁신적인 서비스 개발로 전환하고 있다. 글로벌 시장에서 RAG 기술은 이미 세분화하고 정교화하고 있는 반면 국내 시장은 단순한 검색 기술 정도로 받아들여지고 있다”면서 “인텔리시스는 글로벌 최초로 RAG 구축을 자동화하는 레그빌더를 시작으로 높은 성능을 기반으로 한 혁신적인 LLM 서비스 빌더로 자리매김 하겠다”고 강조했다.