KAIST(총장 이광형)는 바이오·뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능(AI) 기술을 이용해 인공지능 난제 중 하나인 '과적합-과소적합 상충' 문제를 해결하는 원리를 푸는데 성공했다고 5일 밝혔다.
KAIST 이상완 교수와 김동재 박사(뉴욕대학교 박사후 연구원)가 주도하고 KAIST 정재승 교수가 참여한 이번 연구는 '강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법'이라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 '셀 리포트(Cell Reports)'에 지난해 12월 28일자 온라인판에 게재됐다. (논문명: Prefrontal solution to the bias-variance tradeoff during reinforcement learning)
최근 인공지능 모델은 다양한 실제 문제에 대해 최적의 해법을 제시하지만, 상황 변화에 유동적으로 대응하는 부분에 있어 여전히 어려움을 겪고 있다. 기계학습에서는 이를 '과소적합-과적합'의 위험성 (underfitting-overfitting risk) 또는 '편향-분산 상충 문제(bias-variance tradeoff)'라 하며 오랫동안 연구됐지만, 실제 세계와 같이 상충 조건이 계속 변하는 상황에서 명확한 해법은 아직 제안된 바 없다.
반면 인간은 현재 주어진 문제에 집중하면서도(과소적합 문제 해결) 당면 문제에 과하게 집착하지 않고(과적합 문제 해결) 변하는 상황에 맞게 유동적으로 대처한다. 연구팀은 뇌 데이터, 확률과정 추론 모형, 강화학습 알고리즘을 이용해 인간의 뇌가 이 문제를 어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.

인간의 뇌는 중뇌 도파민 회로와 전두엽에서 처리하는 '예측 오차'의 하한선(prediction error lower bound) 이라는 단 한 가지 정보를 이용해 이 문제를 해결한다. 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예를들어 이렇게 풀면 90점까지는 받을 수 있다 등), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예를들어 이렇게 풀면 기껏해야 70점이니 다르게 풀어보자 등)을 통해 '과소적합-과적합' 위험을 최소화한다.
이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했고(뉴런(Neuron) 학술지에 발표), 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(PLOS Biology 학술지에 발표). 이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(네이처 커뮤니케이션즈(Nature Communications) 학술지에 발표).
이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 '전두엽 메타 학습 이론'을 정립한 바 있다(사이언스 로보틱스(Science Robotics)' 학술지에 발표). 이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 '과소적합-과적합' 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.

연구를 통해 개발한 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다고 KAIST는 설명했다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다고 덧붙였다. 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.
KAIST에서 연구를 주도한 제1 저자 김동재 박사는 "인간 지능의 특장점에 대한 이해가 얼마나 중요한지 보여주는 연구 중 하나"라면서 "차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태"라고 밝혔다.
관련기사
- AI가 기업이 원하는 특허 기술 찾아준다2022.01.04
- KT, '커피명가' 카페 40여곳에 AI 통화비서 공급2022.01.05
- 김영섭 KT "올해 AICT회사로 완전한 변화"...AX매출 300% 증가 예고2025.03.31
- 삼성디스플레이, '갤Z' 부진에 폴더블 OLED 성장 고심…내년 애플에 기대2025.03.31
연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다. 인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대한다"면서 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것"이라고 말했다. 이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.
연구팀은 딥마인드, IBM 인공지능 연구소, MIT, 옥스퍼드 대학 등 국제 공동연구 협약 기관과 공동연구를 통해 기술 파급력을 높여나갈 계획이다. 한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 및 한국연구재단 지원을 받아 수행됐다.