한국기계연구원(기계연, 원장 박천홍)은 인공지능(AI)을 활용해 산업현장에서 가동 중인 기계설비의 이상 징후를 찾아내는 기술을 개발했다고 2일 밝혔다.
사람보다 더 정확하고 빠르게 기계장비의 이상을 감지할 수 있는 ‘머신 비전(Machine Vision)’ 기술이라고 연구원은 설명했다.
기계시스템안전연구본부 시스템다이나믹스연구실 선경호 책임연구원 등이 개발했다. 운전 중인 기계설비를 영상 촬영한 후 AI가 자율적으로 기계의 고장여부를 진단하는 머신 비전 기술이다.
'머신 비전'은 사람의 시각을 이용한 판단기능을 기계에 적용한 것이다. 예를 들면 카메라가 수백, 수천 개의 전자회로 기판을 반복 촬영하면서 연결이 잘못된 부분을 찾거나, 제품 표면의 라벨이 제 위치에 붙어있지 않는 것을 골라내는 등의 검사를 할 수 있는 기술이다.
연구팀은 세계 최초로 이 기술을 기계설비의 진단에 적용했다고 밝혔다. 시각적 이미지 분석에 가장 많이 활용되는 딥러닝(Deep Learning) 알고리즘인 ‘합성곱 신경망(CNN: Convolution Neural Network)’을 이용해 기계장비의 가동 영상을 학습함으로써 기계장비에서 발생하는 진동을 분석하고 이상 징후를 발견하게 했다.
딥러닝은 사람의 사고방식을 컴퓨터에 가르치는 인공지능 기술의 한 분야로, 사람의 뇌와 같은 인공 신경망을 이용해 수많은 데이터에서 패턴을 발견하고 이를 스스로 분석하고 처리하는 기술이다.
연구팀은 실험실 규모에서 냉각수 급수펌프 진동 영상을 촬영해 머신 비전으로 이상 징후를 분석한 결과 정상과 비정상의 이상 진동을 100% 정확하게 진단하는 결과를 확인했다고 설명했다. 이 내용을 기반으로 ‘영상 학습을 통한 기계 진단시스템 및 이를 이용한 기계 진단방법’ 특허도 출원했다.
지금까지 기계설비 상태를 분석하기 위해서는 여러 개 진동 센서를 사용해 신호를 측정하고, 전문가가 이렇게 수집한 신호를 분석 및 판단하는 과정을 거쳐야 했다. 개발 기술은 이러한 복잡 과정을 생략하고 촬영 영상과 데이터 학습만으로 동일한 결과를 얻을 수 있게 했다.
관련기사
- SKT, AI 클라우드 솔루션 적용 사례 발표2019.07.03
- 피앤피시큐어, 법무부·기계연 개인정보접속기록관리 공급2019.07.03
- 월드 랠리서 만난 현대차 vs 토요타…"여기선 빠른 제조사가 1위"2024.11.22
- "피부 컨설팅 받고 VIP라운지 즐겨요"…체험 가득 '올리브영N 성수' 가보니2024.11.21
연구팀은 향후 진동이 발생하는 다양한 기계설비에 대해 영상 정보를 추가로 구축하고 터보기계 등의 보다 복잡한 고장 현상을 진단할 수 있도록 발전시킬 계획이다.
선경호 책임연구원은 “머신 비전 기술을 확장하면 플랜트 산업 핵심인 펌프, 압축기 및 배관과 같이 진동이 발생하는 모든 기계설비 진단에 활용할 수 있을 것”이라며 “카메라 한 대로 안전진단을 하면 경제적일 뿐 아니라 사람을 투입하기 어려운 위험한 산업 현장에서도 보다 안전한 기계설비 운용이 가능하다"고 밝혔다.